
Abstract. The Born±Oppenheimer approximation, in-
troduced in the 1927 paper ``On the quantum theory of
molecules'', provides the foundation for virtually all
subsequent theoretical and computational studies of
chemical binding and reactivity, as well as the justi®ca-
tion for the universal ``ball and stick'' picture of
molecules as atomic centers attached at ®xed distances
by electronic glue.
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Chemistry is about structure and reactivity. Modern
discussions of both these subjects center on the concept
of the ``potential-energy surface'', E�R�. As illustrated in
Fig. 1, E�R� is the energy of a molecular system or, more
generally, of any collection of interacting atoms when
the nuclei are ®xed at position R = {R1,R2, ...}. For a
diatomic molecule, E�R� is a one-dimensional ``poten-
tial-energy curve'' representing the energy of the mole-
cule as a function of the internuclear distance. The
location, R0, of the minimum energy along the curve is
the bond length of the molecule. The energy di�erence,
E�1� ÿ E�R0�, is the energy required to break the bond,
i.e., the bond strength. The curvature at the bottom of
the potential well is the force constant that determines
the vibrational frequency of the molecule. The bond
length, R0, determines the moment of inertia of the
molecule, i.e., its rotational motion. Similarly, for a
polyatomic system, stable conformations correspond to
local minima of E�R�, for example, points A and B in
Fig. 1. The properties of E�R� in the vicinity of each
local minimum govern the vibrational and rotational
spectrum and the energetic stability of the conformation.
Reactivity is determined by the pathways that lead from
one stable minimum to another, or between a minimum
and a valley corresponding to separated reactants or
products, for example, regions C and D in Fig. 1. The
minimum energy path connecting two stable conformers

is often identi®ed as the ``reaction coordinate''. The
saddle point Rts, or position of maximum energy along
the minimum energy path, is the ``transition state''
(point E in Fig. 1.). The properties of E�R� in the
vicinity of Rts are the input for the widely used
``transition-state-theory'' or ``activated-complex theory''
of chemical reaction rates. The actual time-dependent
trajectory that the system follows as a reaction pro-
gresses (e.g., the solid curve with directional arrows in
Fig. 1) is the focus of the ®eld of chemical dynamics. Old
chemical bonds may be broken and new ones formed as
the system evolves along the trajectory, and dynamical
questions can be addressed such as is a long-lived
intermediate involved or how is the energy of reaction
deposited among the degrees of freedom of the prod-
ucts? (The oscillatory motion of the trajectory in Fig. 1
illustrates vibrational excitation of products).

The above discussion of chemical structure, proper-
ties, stability, reactivity and dynamics does not mention
the word ``electron''. Indeed, when we picture a molecule
in our minds, on paper or on the computer screen, we
assign positions for each of the nuclei but rarely desig-
nate the positions of electrons. The justi®cation for this
is the Born-Oppenheimer approximation [1]. In the
1920s the new quantum theory was able to demystify the
electronic structure of atoms, even quantitatively for
hydrogen; however, molecules exhibit all the electronic
complexity of atoms and, in addition, comparably
complex interactions among the nuclei. Born and Op-
penheimer recognized that a great simpli®cation results
because the mass of the electron is much less than that of
any nucleon. (The mass of the lightest atom, hydrogen,
is 1836 times that of the electron.) To a good approxi-
mation (with exceptions, as discussed later) electrons
respond instantaneously to the much slower motions of
the nuclei. As the nuclei move through a position R, the
electrons readjust to the same optimum con®guration
that they would have if the nuclei were stationary at
position R. The energy of this optimal electronic con-
®guration is E�R�, a point on the potential-energy sur-
face. Knowledge of E�R� is su�cient to determine
structure and reactivity; explicit knowledge of electronic
motion is not required once E�R� has been determined.
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This prompted Eyring and Polanyi [2], in 1931, to
present the ®rst formulation of chemical reaction dy-
namics in terms of a multidimensional potential-energy
surface, using the hydrogen-exchange reaction as an
example. The electrons have not been removed from the
problem, of course. For any nuclear con®guration R, the
energy E�R� is determined by the full, many-electron
SchroÈ dinger equation for ®xed nuclear positions R.
Thus, the Born-Oppenheimer approximation separates
the problem of chemical structure and reactivity into two
parts: the electronic structure part and the nuclear mo-
tion part.

The Born±Oppenheimer separation is derived as fol-
lows. The total nonrelativistic quantum mechanical
Hamiltonian for a system of interacting atoms is
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where r and R denote the positions of the electrons and
nuclei, respectively, Ma is the mass of nucleus a and me is
the electron mass. V(r,R) includes all interparticle
interactions: electron±electron repulsions, electron±nu-
clear attractions, and nuclear±nuclear repulsions. Thus
Hel�r;R� is the entire Hamiltonian of the system with
the exception of the kinetic-energy operator for the slow
particles. Hel�r; R� can be viewed as the Hamiltonian
that governs the electrons when the nuclei are ®xed
at position R. We now de®ne the adiabatic (Born±
Oppenheimer) electronic wave functions Uj�r;R� to be
the eigenfunctions of Hel�r;R� for a ®xed R:

Hel�r;R�Uj�r;R� � Ej�R�Uj�r;R� : �2�
Ej�R� is the adiabatic or Born-Oppenheimer potential-
energy surface corresponding to electronic state j. The
ground-state (j = 0) potential-energy surface E0�R� is
the same as that referred to in qualitative terms in the
®rst paragraph. The Ej�R� for j ¹ 0 are the potential-
energy surfaces corresponding to the excited electronic
states. The Uj�r;R� depend only parametrically on
the nuclear positions R; thus the semicolon in Uj�r;R�.
The ground- and excited-state electronic wave functions
Uj�r;R�; for any ®xed R, constitute a complete set that
spans the space of the electrons; thus, we can express the
exact molecular wave function W�r;R� as
W�r;R� �
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Substituting Eq. (3) into the SchroÈ dinger equation using
the Hamiltonian of Eq. (1), multiplying from the left by
U�j �r;R�; and integrating over electronic coordinates r,
we obtain a set of coupled SchroÈ dinger equations for the
wave functions Xj�R� describing nuclear motion on each
potential-energy surface, Ej�R�:
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where the ®rst and second derivative matrix elements are
de®ned as
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By neglecting the right-hand side of Eq. (4), we obtain

ÿ �h2

2

X
a

Mÿ1a r2
Ra � Ej�R� ÿ E

" #
Xj�R; t� � 0 : �7�

Note that the ®rst term on the right-hand side of Eq. (4)
contains a diagonal term involving Djj�R�. This term is
frequently included in Eq. (7) as a correction to Ej�R�.
We omit it here for simplicity; it is of the same order of
magnitude as the neglected o�-diagonal Dij�R� terms.
The ®nal result, Eq. (7), is that nuclear motion is
governed by a SchroÈ dinger equation, with the poten-
tial-energy function given by Ej�R�. Ej�R�, in turn,
is obtained from Eq. (2) for each required nuclear
geometry R. This is the Born-Oppenheimer approxima-
tion.

Born and Oppenheimer presented the theoretical
justi®cation for neglecting the two terms on the right-
hand side of Eq. (4) using perturbation theory, with the
small parameter n chosen to be

n � �me=M�1=4 : �8�
M is a typical nuclear mass and me is the electron mass,
taken to be unity. For a diatomic molecule vibrating

Fig. 1. A schematic two-dimensional representation of a multidi-
mensional potential-energy surface. R1 and R2 represent bond
distances. The solid curves are contours of equal electronic energy,
E�R�
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near its minimum, the internuclear separation is expres-
sed as

R � R0 � nu : �9�
where the reduced distance u was argued to be of order
unity, i.e., of the same order as R0. From Eqs. (8) and
(9), Mÿ1 / n4 and @=@R / nÿ1. This gives the following
scaling relationships:

Typical vibrational energy/ 1=
�����
M
p
/ n2 ;

Typical rotational energy/ 1=MR2
0/ n4 ;

First derivative coupling / dij�R�@=@R/Mÿ1@=@R/ n3 ;

Second derivative coupling /Dij�R�/Mÿ1/ n4 :

For M of order 104me; n is of order 0.1. Thus, typical
vibrational and rotational energies are of order 10ÿ2 and
10ÿ4, respectively, compared to electronic energies. The
Djj�R� correction to the potential-energy surface Ej�R�
is of order 10ÿ4; similar to a rotational spacing. The
mixing of electronic states i ¹ j is proportional to the
squares of the ®rst and second derivative couplings,
i.e., n6 � 10ÿ6 and n8 � 10ÿ8, respectively. This provides
the justi®cation for the Born-Oppenheimer approxima-
tion.

The impact of the Born-Oppenheimer approximation
in chemistry is pervasive. It is not an exaggeration to say
that the single activity that has demanded the most e�ort
(both intellectual and computational) from theoretical
chemists in the twentieth century is the electronic struc-
ture problem, i.e., the calculation of Ej�R� for ®xed R by
ab initio, semiempirical, and empirical approaches. The
tremendous improvements in the accuracy and practi-
cality of ab initio methods that have been achieved were
recognized by the award of the 1998 Nobel Prize in
Chemistry to Walter Kohn and John Pople. Electronic
structure computer codes have now become an invalu-
able tool of the modern theoretical and experimental
chemist. This tool is applied routinely to elucidate
structure and reactivity in a myriad of ways. With the
help of methods for computing analytical derivatives,
local minima of Ej�R� can be found and characterized.
This directly gives the structure and stability of bound
molecular species. In addition, analytical second deriva-
tives of Ej�R� provide the force constants needed to
compute vibrational spectra. Electronic spectra can be
computed from the energy spacings of Ej�R� for di�erent
electronic states j, combined with the overlap integrals
between vibrational wave functions computed on the two
potential surfaces. The latter, called ``Franck-Condon
factors'' were described in the original Born-Oppenhei-
mer paper. Many other properties can be computed from
the ®xed-nuclei electronic wave functions, including spin-
orbit interactions, magnetic resonance chemical shifts,
molecular polarizabilities, dipole moments and transition
dipoles, ionization potentials and electron a�nities, etc.
Analytical ®rst and second derivatives of Ej�R� also fa-
cilitate the location and characterization of transition
states, allowing ab initio determination of chemical re-
action rates using transition-state theory. Monte Carlo
sampling of the potential-energy surface has become a

practical method in statistical mechanics for obtaining
thermodynamic properties of molecules, ¯uids, adsorb-
ates on surfaces, etc.

The Born-Oppenheimer approximation is also the
cornerstone of the ®eld of chemical dynamics. ``Molec-
ular dynamics'', the simulation of the classical mechani-
cal motion of interacting atoms, has important
applications in ®elds ranging from biology to materials
engineering. Molecular dynamics is based on, ®rst, the
Born±Oppenheimer approximation, and second, the
classical limit of Eq. (7). The latter requires calculation of
the classical forces, i.e., derivatives of Ej�R�. This can be
done either in advance or point-by-point along the
trajectory, employing ab initio, semiempirical, or
empirical methods. For all these alternatives, the nuclei
evolve via classical mechanical equations of motion on
an approximation to the Born-Oppenheimer potential-
energy surface Ej�R�, of Eq. (2). Thus, the terminology
``quantum molecular dynamics'' that is sometimes ap-
plied when ab initio forces are used is unfortunate. This
classi®cation should be reserved for situations where the
heavy-particle motion is treated by quantum mechanics,
i.e., Eq. (7).

Central to the argument of Born and Oppenheimer is
the assumption that electronic wave functions vary on
a spatial scale comparable to the reduced distance u of
Eq. (9), i.e.,Z

U�i r; u� � @Uj r; u� �=@u
� �� 	

dr � 1 : �10�

This condition is not always satis®ed. For example, in
regions where two electronic states approach very closely
in energy, the adiabatic electronic wave functions can
change signi®cantly in character in response to a very
small change internuclear distance. For such ``avoided-
crossing'' situations, the Born-Oppenheimer approxima-
tion may be invalid [3]. There are many such situations
in chemistry. Examples include nonradiative transitions
in molecules and solids, electron transfer, quenching of
excited electronic states, collisional electronic excitation,
and inelastic electron scattering. To describe such
processes, ``nonadiabatic transitions'' among di�erent
potential-energy surfaces must be accounted for; how-
ever, this language is still based on the Born±Oppenhei-
mer concept of potential-energy surfaces. Thus, the
Born-Oppenheimer separation of electronic and nuclear
motion remains central to the description, but the theory
must be extended to multiple electronic states. This
requires calculation of the derivative coupling matrix
elements of Eqs. (5) and (6), an area where further
progress is required.

Another area that will draw attention in the future is
``true'' quantum molecular dynamics, in which Eq. (7) or
its time-dependent form describing the nuclear motion
is solved quantum mechanically, without the classical
approximation. This represents the ultimate limit of the
Born-Oppenheimer approximation. In some cases it may
be advantageous to make an additional, second-level
Born-Oppenheimer separation of fast and slow nuclear
motions, with inclusion of nonadiabatic transitions
among nuclear quantum states.
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While quantum mechanical simulation of nuclear
motion will become more practical in the future, classi-
cal mechanical molecular dynamics will remain an
important tool for simulating large molecular systems
for many years to come. Ab initio determination of
forces will play an increasingly large role. But a system
of N atoms requires at least 103N points to completely
map out Ej�R� (ten points along each degree of free-
dom). For N of order 100, it is clearly prohibitive to
comprehensively tabulate Ej�R� in advance (in the ab-
sence of simpli®cations such as pairwise additivity). By
contrast, a l-ns trajectory with l-fs time steps requires 106

evaluations of Ej�R� and its derivatives, a very formi-
dable task but far more accessible than the alternative.
Thus, it will be essential in the future to develop ``on-the-
¯y'' methods for ab initio calculation of forces [4].

The Born-Oppenheimer approximation separates the
theoretical study of molecules into two parts, the elec-
tronic structure part, Eq. (2), and the nuclear motion
part, Eq. (7). This has produced a separation among
theoretical chemists themselves: the electronic structure

theorists and the statistical mechanics/dynamics theo-
rists, i.e., those that compute Ej�R� and those that use it.
While this is an overstatement and there have been many
theorists with a foot in each camp, this bifurcation has
been unhealthy for chemistry. Theoretical chemists of
the future will need to be expert in both electronic
structure and statistical mechanics/dynamics (perhaps as
well as in biology, condensed matter physics, materials
science, environmental science, computer science, ¼?).
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